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Diffusion Models

• Models like VAEs, GANs, and flow-based models proved to be a great 
success in generating high-quality content, especially images.

• Diffusion Models are a class of generative models inspired by 
thermodynamics that has proven to be better than previous 
approaches.

• They use forward and reverse processes to generate high-quality 
images.

• Applications include noise reduction, image generation, and 
reinforcement learning.



Flow-based models 

• Invertibility: Flow-based Models provide a framework for data 
transformation via invertible mappings, gradually converting simple 
distributions (e.g., Gaussian) into complex ones (e.g., image 
distributions).

• Incremental Transitions: This approach supports layered 
transformations, ensuring that each step introduces small and 
controllable changes.



Forward and Reverse Processes

• Forward Process: Gradually add noise to input data.
• Reverse Process: Step-by-step denoising to reconstruct original data.
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Markov Chains in DDPM

• Forward Process:
• Progressive Noise Addition: DDPM uses Markov chains to iteratively add 

Gaussian noise to the data, transforming it step-by-step from structured 
data   into pure noise. 

• Each step depends only on the previous step, following the property of 
Markov chains.

• Key Point: The Markov chain ensures that each step is controlled 
and reversible, which is critical for the reverse process.



Markov Chains in DDPM

• Reverse Process:
• Step-by-Step Denoising: The reverse process in DDPM is modeled as an 

inverse Markov chain. 
• Starting from pure noise ​, the model predicts the noise at each step to 

denoise progressively.

• Key Point: The Markov chain structure provides a stable and 
consistent framework for generating high-quality images, though it 
requires many steps to complete the process



Key Modules in the Implementation

• Gaussian Diffusion Utilities:
• Manage the scheduling and progression of noise.
• Support data processing for both forward and reverse processes.

• Network Architecture:
• Based on an optimized U-Net structure, designed to suit the characteristics 

of diffusion models.

• Training:
• Use the MSE loss function to predict noise, combined with EMA for weight 

updates.
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Improvements in DDIM

• Deterministic Mapping in the Reverse Process:
• DDIM eliminates the stochastic nature of Markov chains in the 

reverse process. 
• Instead, it introduces a new derivation, transforming the reverse 

process into a deterministic mapping.



Improvements in DDIM

• Diffusion Schedule
• controls how much noise is added at each step during the forward 

process.
• Defined by parameters 𝛽𝛽𝑡𝑡​ (noise increment) and 𝛼𝛼𝑡𝑡 (data retention).
• Ensures smooth transition from clean data to pure noise.
• Helps the model effectively learn the reverse process (denoising).



Improvements in DDIM

• Efficiency Gains:
• This design allows DDIM to reduce the number of reverse steps 

significantly, as it no longer relies on random sampling.
• Markov chains require a large number of steps to ensure the 

continuity of generation, while DDIM directly performs 
deterministic calculations with larger step sizes, achieving faster 
generation.



Requirements

• Complete the TODO sections in the following code, including 
diffusion_schedule, denoise, and reverse_diffusion.

• Briefly summarize what you did and explain the performance results.
• This assignment does not specify a clear model loss threshold.
• However, please train your model to the extent that it can generate 

images with clearly recognizable flowers. 
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